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A new global potential energy surface is reported for the 4A′′ ground electronic state of the N3 system from
double many-body expansion theory and an extensive set of accurate ab initio energies extrapolated to the
complete basis set limit. It shows three equivalent metastable potential wells for C2V geometries that are
separated from the three N(4S) + N2 asymptotes by energy barriers as predicted from previous ab initio
work. The potential well and barrier height now predicted lie 42.9 and 45.9 kcal mol-1 above the atom-diatom
dissociation limit, respectively, being about 1 kcal mol-1 lower than previous theoretical estimates. The ab
initio calculations here reported predict also a 4B1/4A2 conical intersection and reveal a new minimum with
D3h symmetry that lies 147 kcal mol-1 above the atom-diatom asymptote. All major topographical features
of the potential energy surface are accurately described by the DMBE function, including the weakly bound
van der Waals minima at large atom-diatom separations.

1. Introduction

The nitrogen exchange reaction has recently been the subject
of considerable theoretical work since its rate constant is part
of the necessary database for the design of spacecraft heat
shields.1 As experimental measurements are available only for
two temperatures (T ) 1273 and 3400 K) and have large error
bars,2–4 theoretical approaches are the only way to accurately
obtain the necessary results at the temperatures achieved in the
high-speed re-entry of spacecrafts into the Earth’s atmosphere.

The first scattering calculations on the title system were
performed on a London-Eyring-Polanyi-Sato (LEPS) poten-
tial energy surface5 (PES), which has been for many years the
only available one. Only recently, due to the inadequacy of this
LEPS form of Laganà et al.5 to describe the main features of
the nitrogen atom-diatom interaction, new PESs by the same
group6,7 (denoted by the authors as L0 to L4) were proposed,
with the more recent one (L4)7 being fitted to 56 ab initio
energies that were obtained using CCSD(T) (coupled-cluster
singles and doubles with perturbative correction of triples) theory
with the aug-cc-pVTZ basis set of Dunning8,9 (such basis sets
are generally denoted as AVXZ, where X ) D, T, Q,... is the
cardinal number).

The first ab initio based PES for the N + N2 reaction system
is due to Wang et al.,1,10,11 who have utilized it for a quantum
dynamics study of the title reaction. This PES (named WSHDSP
after their authors) has employed the many-body expansion12,13

formalism, and has been calibrated through a fit to a set of
merged ab initio energies obtained using different quantum
chemical treatments and basis sets.

As noted in ref 6, the thermal rate coefficients computed on
the WSHDSP PES do not compare with the available experi-
mental data as favorably as those computed on the LEPS form,
which may partly be due to incompleteness of the basis set and
other corrections such as incompleteness of the n-electron wave
function, relativistic, and nonadiabatic corrections. Our major
goal in this work will be to obtain a PES extrapolated to the

complete basis set (CBS) limit, and model the energies
analytically using double many-body expansion (DMBE) theory.
The paper is organized as follows. Section 2 provides a
description of the ab initio calculations and CBS extrapolation
scheme. The modeling of the data using DMBE theory is
reported in section 3, and the topological features of the PES
discussed in section 4. Section 5 gathers the conclusions.

2. Ab Initio Calculations and Extrapolation Procedure

All ab initio calculations have been done with the Molpro
package14 for electronic structure calculations, and different
methods tested using basis sets of the AVXZ8,9 family (denoted
for further brevity as XZ). In spite of achieving good results
for regions of configuration space where one N-N bond is close
to the equilibrium geometry of the N2 molecule, the CCSD(T)15

results do not behave correctly for N-N2 cuts involving
stretched diatomics, as one might expect for a single-reference
based method. Conversely, the multireference configuration
interaction (MRCI) approach, including the popular Davidson
correction for quadruples excitations [MRCI(Q)16,17 shows the
proper behavior for the stretched structures. The CASSCF
(complete active space self-consistent field) reference space for
the MRCI(Q) method involves 15 correlated electrons in 12
active orbitals (9a′ + 3a′′). Unfortunately, the MRCI(Q) method
is rather expensive, even using smaller basis sets, which led us
to adopt a cost-effective, yet efficient, strategy whereby
relatively inexpensive MRCI(Q) calculations are merged with
cheap, yet accurate, CCSD(T) ones. To put them at a common
level of accuracy, we have extrapolated the calculated energies
to the complete basis set limit. For this, we have utilized the
uniform singlet- and triplet-pair extrapolation (USTE) method
proposed by one of us,18 which shows advantages over earlier
popular methodologies19–21 and has been shown to yield accurate
results even with CBS extrapolation from small basis sets. In
fact, such a technique appears to provide a highly desirable route
for accurately treating systems with up to a large number of
electrons, as recent studies have demonstrated.22–25 It should be
further remarked that CBS extrapolation has shown24,26 to correct
largely for basis set superposition error,27 supporting the idea
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that no further corrections are necessary to overcome in a simple
and reasonably accurate way such an ubiquitous problem.

Aiming at a consistent description of the PES with different
ab initio theories, each one chosen to be used (due to the physics
of the problem or a priori design of the overall approach) at a
specific region of configuration space, we suggest next a scheme
to make them compatible while extrapolating to the CBS limit.
As usual, at every geometry, the CBS extrapolated dynamical
correlation energy is added to the CBS extrapolated CASSCF
energy, yielding the total energy. First, following previous
work,18 the raw CASSCF (or simply CAS) energies are CBS
extrapolated with the two-point extrapolation protocol of Karton
and Martin (KM)29 that has been originally proposed for
Hartree-Fock energies:

where the cardinal number of the basis set is indicated in
subscript (note that the CBS limit corresponds to X ) ∞), and
R is the collective variable of the space coordinates. For
Hartree-Fock energies, this formula is known to benchmark
perform with a root mean squared error of 206 µEh or so. Such
an accuracy is smaller than achieved by CBS energies obtained
by extrapolating X ) Q, 5, 6 energies with the exponential CBS
extrapolation, and even more so when our improved CBS
exponential scheme18 is used, whereby the exponentially
extrapolated energy is averaged with the raw CAS energy for
X ) 6. Indeed, for N3 at the geometry corresponding to the C2V
minimum, the exponential-CBS and modified exponential-CBS18

protocols predict the values of -163.434 786 and -163.434 769
Eh, which are less negative by 416 and 432 µEh than the
prediction obtained by the KM formula when applied to CAS
energies. Because the error is expected to be smaller for relative
energies, such an expected compensation led us to keep the
method at its minimum computational complexity by avoiding
the burden of having to do further calculations using two extra
basis sets (X ) 5, 6).

The CCSD(T) dynamical correlation energy is extrapolated
with the correlation scaling/unified singlet- and triplet-pair
extrapolation method based on a single pivotal geometry30 [CS1/
USTE(T,Q)] as follows. First, an energy is calculated with the
QZ basis set at a reference geometry (any point of the set of
geometries designed for the fit). Then, at this point (referred to
as the pivotal geometry), the (T,Q) pair of dynamical correlation
energies calculated as the difference between the CCSD(T) and
CAS energies are CBS extrapolated using the USTE(T,Q)18

protocol:

where A5(0) ) 0.003 768 545 9 Eh, c ) -1.178 477 13 Eh
-1/4,

and R ) -3/8. The CBS extrapolated dynamical correlation
energy is then added to the CBS extrapolated CAS energy to
obtain the total energy at the chosen pivotal geometry. Such a
strategy has indeed been shown to generate accurate functions
as recently reported25 for the ground electronic state of H2S. It
should be mentioned that the parameters employed in eq 2 are
not the ones recommended18 for CC-type methods but for the
MRCI one, since the dynamical correlation (relative to the
CASSCF energy, rather than the full correlation with respect

to the HF energy) is being extrapolated. This may also ensure
further consistency on merging the MRCI(Q) and CCSD(T)
energies.

The CBS extrapolated dynamical correlation energies in the
remaining CCSD(T) geometries are now obtained by correlation
scaling:28,30

where the scaling function � assumes the form

Re is the pivotal geometry, and

For further details, the reader is addressed to the original papers.
Suffice it to say that the reference geometry (Re) in the single-
pivotal scheme28 utilized here can be any point of the PES,
having been taken as the geometry of the C2V minimum of N3

at the CCSD(T)/AVTZ level: R1 ) R2 ) 2.39a0, and θ ) 119°.
The above extrapolation scheme can yield accurate potentials

at costs as low as one may possibly ambition, its accuracy
having been tested for diatomic systems through vibrational
calculations. Despite the severe test of the approach, very good
results have been obtained,30 as well as for triatomic25 and even
larger systems23,24 (these treated with a variant33 of USTE); see
also ref 34 for an application of CS to large systems.

For the CBS extrapolation of the MRCI(Q) dynamical
correlation energies, we have first chosen some representative
cuts, where the CCSD(T) method begins to breakdown. MR-
CI(Q) calculations have then been performed with DZ and TZ
basis sets. To obtain a smooth merging of the CBS energies
calculated from these two methods, the MRCI(Q) energies are
first calibrated using the CCSD(T) ones. For this, we have
utilized the CS scheme with E∞

dc(Re) in eq 4 taken as the
extrapolated CCSD(T) value obtained above. Such a pro-
cedure requires explicit MRCI(Q) calculations only for DZ and
TZ basis sets while ensuring that both methods yield identical
CBS energies at the pivotal geometry: E∞

dc(MRCI(Q),Re) )
E∞

dc(CCSD(T),Re). An illustrative cut is presented in Figure 1,
where the pivotal geometry has been chosen so as to warrant
that CCSD(T) theory provides good results. Note that the scaling
function in eq 4 imposes that the extrapolated MRCI(Q) and
CCSD(T) energies coincide at Re ) 3.3a0. Thus, no discontinuity
arises in the energy along the chosen cut.

3. DMBE Potential Energy Surface

Within the DMBE31,32,35,36 framework, the potential energy
surface is first written as a sum of one-, two-, and three-body
terms:
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To fix the zero of the energy of the PES at a N2 molecule at
equilibrium and one N(4S) atom infinitely separated, we impose
that the one-body term equals to V(1) ) -2De, where De is the
well depth of the N2 molecule. Clearly, the PES ensures the
proper asymptotic limits, i.e., V(Re,∞,∞) ) 0, and V(∞,∞,∞) )
De. Each n-body term is now split into extended Hartree-Fock
[V

EHF
(n) ] and dynamical correlation [V

dc
(n)] contributions, whose

analytical forms are described in detail in the following sections.
Although all such forms have a semiempirical motivation from
past work, it should be stressed that they are here utilized to fit
the CBS extrapolated data, and hence the resulting PES contains
no information at all that is alien to the ab initio methods that
have been utilized.

3.1. Two-Body Energy Terms. The diatomic potential curve
for the ground state of molecular nitrogen has been modeled
using the extended Hartree-Fock approximate correlation
energy method for diatomic molecules, including the united-
atom limit (EHFACE2U),37 and fitted to CBS extrapolated
energies described in the previous section for the asymptotic
atom-diatom cuts. The EHF term assumes the form

where r) R - Re is the displacement from the equilibrium
diatomic geometry, D and ai (i ) 1,..., n) are adjustable
parameters, and the range decaying term in the exponential is
given by form γ(r) ) γ0[1 + γ1 tanh(γ2r)].

In turn, the dynamical correlation part assumes the form

where

is a charge-overlap damping function for the long-range
dispersion energy, and the summation in eq 8 is truncated at n

) 10. In turn, An ) R0n-R1 and Bn ) �0 exp(-�1n) are auxiliary
functions,31,35 with R0 ) 16.366 06, R1 ) 0.701 72, �0 )
17.193 38, and �1 ) 0.095 74 being universal-type parameters.
Moreover, F ) 5.5 + 1.25R0 is a scaling parameter, R0 )
2(〈rA

2〉1/2 + 〈rB
2〉1/2) is the Le Roy38 parameter for the onset of

the undamped R-n expansion, and 〈rX
2〉 is the expectation value

of the squared radius for the outermost electrons of atom X.
All coefficients used in the N2(X1Σg

+) potential curve, and other
parameters necessary to construct the DMBE function are given
as Supporting Information.

3.2. Three-Body Energy Terms. 3.2.1. Three-Body Dy-
namical Correlation Energy. The three-body dynamical cor-
relation energy term assumes the form39

where Ri, ri, and θi are the Jacobi coordinates (Ri is a NN
distance, ri the N-NN corresponding separation, and θi the
included angle), and fi ) 1/2{1 - tanh [�(ηRi - Rj - Rk)]} is a
switching function with parameters fixed at η ) 6 and � ) 1a0

-1;
corresponding expressions hold for Rj, Rk, fj, and fk. Regarding
the damping function �n(ri), we still adopt eq 9 but with Ri

replaced by ri, and R0 estimated as for the Si-N diatomic (Si
corresponds to the united atom of the coalesced N2 diatom; see
ref 39).

The atom-diatom dispersion coefficients in eq 10 also
assume their usual form

where PL(cos θi) denotes the Lth Legendre polynomial. The
expansion in eq 11 has been truncated by considering only
the coefficients C6

0, C6
2, C8

0, C8
2, C8

4, C10
0 ; all other coefficients

have been assumed to make negligible contributions. To estimate
the dispersion coefficients, we have utilized the generalized
Slater-Kirkwood approximation,40 with the dipolar polariz-
abilities calculated at the MRCI/AVQZ level. The atom-diatom
dispersion coefficients so calculated for a set of internuclear
distances have then been fitted to the functional form

where b1 ) a1, and Cn
L,NN is the atom-atom dispersion

coefficient for L ) 0 and zero for other values of L. The
internuclear dependence of such coefficients are displayed in
Figure 2. As noted elsewhere,39 eq 10 causes an overestimation
of the dynamical correlation energy at the atom-diatom
dissociation channels. This can be corrected by multiplying the
two-body dynamical correlation energy for the ith pair by Πj*i(1
- fj), where fi is the switching function used in V

dc
(3) term, with

corresponding expressions for channels j and k.
3.2.2. Three-Body Extended Hartree-Fock Energy. With

the one- and two-body terms and also the three-body dynamical
correlation energy at hand, the three-body EHF term can now
be determined for every geometry by subtracting the other
contributions:

Figure 1. Extrapolated CCSD(T) and MRCI(Q) energies used to
calibrate the DMBE PES for a cut corresponding to a N atom
approaching N2 with RNN ) 2.7118a0 and the Jacobi angle fixed at
30°. In this and all subsequent plots, the zero of energy corresponds to
the N2 + N reaction channel (with the diatomic in its equilibrium
geometry), as described by extrapolated CCSD(T) energies.
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Of course, the representation of the PES must be symmetric
with respect to permutation of the coordinates. Such a require-
ment is satisfied by using the integrity basis:

where Qi are symmetry coordinates.12,13,41 The functions Γi are
all totally symmetric in the three-particle permutation group S3.
Thus, any polynomial built from Γi also transforms as the totally
symmetric representation of S3. The EHF three-body energy is
then fitted to a function in these coordinates using a three-body
distributed polynomial42 approach:

where the polynomials are defined as

and T(R) is a range-determining factor that ensures that the
three-body term vanishes at large interatomic distances,

To describe the van der Waals region, a polynomial with the
range function above is not suitable since it vanishes with a
similar decay rate for all bond distances. To overcome such a
difficulty, we have chosen one bond length to have a different
reference value and decaying parameter (thus having C2V
symmetry). Since this cannot impose the correct permutational
symmetry, a summation of three such functions has been
utilized. The V

EHF
(3) function defined above contains a total of

276 linear parameters (c
ijk
m , as given in the Supporting Informa-

tion) that have been calibrated using a total of 1592 ab initio
points. A summary of the errors in the fitting procedure is
displayed in stratified form in Table 1. It should be pointed out
that larger weights were attributed to the most important regions
of the PES, namely stationary points (in particular for the subtle
van der Waals minima).

4. Features of DMBE Potential Energy Surface

Table 2 compares the attributes of the two main stationary
points of the DMBE form with the corresponding attributes from
other potential energy surfaces.1,7 Also included are the values
calculated at CCSD(T)/AVTZ and CCSD(T)/CBS level. As can
be seen, the extrapolation of the ab initio energies to the CBS
limit leads to a significant decrease in the height of the well
and transition state relative to the atom-diatom limit, being
predicted respectively as 42.9 and 45.9 kcal mol-1. The energy
difference between them is also increased by ∼0.6 kcal mol-1,
while their geometries are essentially indistinguishable from the
raw CCSD(T) ones at the TZ level.

The calculated MRCI(Q) energies (performed just for the
ground state) here reported show also a shallow D3h minimum
surrounded by two C2V stationary structures, a feature that
appears to arise due to a conical intersection between the
ground and first excited state of 4A′′ symmetry, or between
the 4B1 and 4A2 states in C2V symmetry, as shown in Figure
3, where single state CASSCF calculations performed for
each symmetry are shown. Indeed, as demonstrated in the
insert of Figure 3, the wave function changes sign when
transported adiabatically along a closed path encircling the
point of crossing (with a small radius of 0.6a0 to avoid
encircling more than one crossing), as it should by the
Longuet-Higgins’ 43 sign change theorems for a conical
intersection. Note that the sign change has been illustrated
by plotting the dominant component of the CAS vector along
the chosen path, following pioneering work for the LiNaK
system.44

A full view of the DMBE PES for C2V insertion of a
nitrogen atom in the nitrogen diatomic is shown at Figure 4
where the two saddle points and minimum described above
are apparent. To improve the representation of this region
of the PES, a relatively dense grid of MRCI(Q) points has
been calculated and used in the fit. As shown, the DMBE
function predicts a D3h minimum with a characteristic bond
length of 2.95a0, which lies 146.6 kcal mol-1 above the N +
N2 reaction asymptote (but still below the energy for the three
separated-atoms limit). Such a minimum is connected to the
absolute ones by saddle points in the Cs ground state), being
the full numerical characterization (geometries, energies, and
harmonic vibrational frequencies) of these stationary points
reported in Table 3.

Figure 2. Dispersion coefficients for the atom-diatom asymptotic
channel as a function of the diatomic internuclear distance.
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All major features of the PES are probably better viewed in
the relaxed triangular plot45 of Figure 5 utilizing scaled
hyperspherical coordinates (�f ) �/Q and γf ) γ/Q):

Note that the perimeter of the molecule is relaxed such that the
energy of the triangle formed by the three atoms is lowest at
any point. Clearly visible are the equivalent stationary structures
for the N + N2 exchange reaction (wells and transition states),
as well as those in the vicinity of the D3h geometry (γf ) �f

) 0) already commented.
The equivalent N-N2 van der Waals minima are described

with a root mean squared deviation of ∼0.001 kcal mol-1

for the 144 ab initio energies shown in Figure 6. Note that
there are two types of such minima, one for geometries with

C2V symmetry, and the other for geometries with C∞V

symmetry, the deepest being T-shaped like.

The isotropic and leading anisotropic terms in a Legendre
expansion of the N-N2 interaction potential are important
quantities for the study of scattering processes, with the sign
of V2 indicating whether or not the molecule prefers to orient
its axis along the direction of the incoming atom: a negative
value favors the collinear approach while a positive value
favors the approach through C2V geometries. Such potentials
are shown in Figure 7. Note that the well and barrier in the
short-range region of the leading anisotropic component, V2,
correspond to the C2V well and Cs transition state, while the
negative values attained by both the isotropic and anisotropic
components at distances larger than 6 a0 reflect the attractive
nature of the van der Walls interaction.

TABLE 1: Stratified Global Root-Mean-Square Deviations
(in kcal mol-1) of N3(4A′′) DMBE Potential Energy Surface

energya Nb rmsd

0 85 0.001
10 279 0.212
20 335 0.281
30 369 0.358
40 408 0.402
50 704 0.380
60 819 0.451
70 899 0.543
80 971 0.615
90 1017 0.625
100 1073 0.673
250 1443 0.908
500 1528 0.952
1000 1564 0.963
3000 1585 0.979

a In kcal mol-1 and relative to the N(4S) + N2 asymptote.
b Number of calculated ab initio points up to the indicated energy
range.

TABLE 2: Stationary Points of N3(4A′′) Potential Energy
Surface, for Different Fitted Forms and CCSD(T) ab Initio
Values (at AVTZ and CBS Levels)a

feature property WSHDSPb L4c AVTZd CBS DMBE

Min (C2V) R1/a0 2.40 2.40 2.39 2.38 2.38
R2/a0 2.40 2.40 2.39 2.38 2.38
θ/deg 120 119 119 119 119
∆Ee 43.7 44.5 44.7 42.9 42.9
ω1/cm-1 860 702
ω2/cm-1 1279 1323
ω3/cm-1 665 566

sp (Cs) R1/a0 2.23 2.24 2.22 2.20 2.20
R2/a0 2.80 2.77 2.84 2.85 2.83
θ/deg 119 117 117 117 116
∆Ee 47.2 47.4 47.1 45.9 45.9
ω1/cm-1 599 511
ω2/cm-1 760i 652i
ω3/cm-1 1585 1740

a The geometries are in valence coordinates. b From ref 1. c The
geometry optimizations with the L4 potential energy surface7 are
from the present work. d Ab initio geometry optimization at the
CCSD(T)/AVTZ level. e In kcal mol-1, relative to the N(4S) + N2

asymptote.

(Q
�
γ ) ) (1 1 1

0 √3 -√3
2 -1 -1 )(R1

2

R2
2

R3
2 ) (20)

Figure 3. CASSCF description of the conical intersection with the
AVTZ basis set. The open symbols connected by smooth splines
correspond to points calculated in the 4A2 and 4B1 states of C2V
symmetry, while the solid diamonds correspond to calculations with
4A′′ symmetry (the zero of energy is the CASSCF value for the N(4S)
+ N2 channel). Shown in the inset is an illustration of the sign change
theorem for a closed path (circle) around the conical intersection (the
point of crossing shown in the main plot): ci is the coefficient of the
dominant configuration in the CASSCF wave function of the first 4A′′
state.

Figure 4. Contours plot for the C2V insertion of the N atom into N2.
Contours are equally spaced by 10 mEh, starting at zero. The dashed
line shows the location of D3h geometries while the inset displays a
zoom around the D3h minima (contours spaced by 0.5 mEh), with the
stationary points indicated by filled circles.
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Finally, we report the results of a preliminary dynamics study
aiming at testing the DMBE potential energy surface here
reported. Specifically, we have run trajectories for the exchange
reaction N + N2 f N2 + N using the quasiclassical trajectory
method as implemented in the Venus computer code.46 The rate
constants here reported have been calculated directly using
Maxwell-Boltzmann distributions for the translational energy
and rovibrational quantum states.47 Due to the high barrier of
the exchange reaction (E0 ) 45.9 kcal mol-1, including the zero-

point energies of the reactants and transition state), all trajec-
tories with internal energy below E0 were not integrated and
simply considered as nonreactive.48 A total of 6.4 × 105

trajectories has been run for each temperature, with the impact
parameter being bmax ) 1.8 Å (determined as usual by a trial
and error procedure). Table 4 compares the thermal rate
coefficients so calculated at two temperatures with the results
obtained from other potential energy surfaces. The results for
the DMBE and L4 PESs have been calculated using our own
QCT approach for a better comparison, while those of WSHDSP
utilized the quantal J-K-shifting method. As expected from the
smaller barrier in the DMBE function, a larger reactivity is
predicted than with other available forms, pointing to a slightly
better agreement with the available experimental data.

5. Conclusions

We have reported a single-sheeted DMBE potential energy
surface for the quartet state of N3 based on a fit to CBS
extrapolated CCSD(T) and MRCI(Q) energies. A procedure of
the smooth merger of these two correlated methods at the CBS-
limit has been developed to calculate the points on the single
potential energy surface based on the modified correlation
scaling (CS)-scheme which assures that there exist no discon-
tinuities. The MRCI(Q)/CBS energies are calibrated using the
CCSD(T)/CBS result at the pivotal geometry (e.g., local
minimum). In fact, the procedure is formulated in such a way
that at the reference pivotal geometry of N3 the MRCI(Q)/CBS
energy coincides exactly with the CCSD(T)/CBS energy. The
DMBE potential energy surface describes accurately all topo-
graphical features of the calculated ab initio energies, except
for the conical intersections that have been replaced by narrowly
avoided ones. As an asset of DMBE theory, the van der Waals
regions are also described accurately. Finally, exploratory quasi-
classical trajectories on the atom-diatom nitrogen reaction have
shown that the PES is suitable for any kind of dynamics studies.
A detailed report of such studies is planned for a future
publication.

TABLE 3: D3h Minimum and Nearby Stationary Features
Arising from Approximating Conical Intersection with
Single-Sheeted DMBE Formalisma

Min (D3h) sp1
b (C2V) sp2 (C2V)

R1/a0 2.95 2.69 3.08
R2/a0 2.95 3.07 2.89
R3/a0 2.95 3.07 2.89
∆Ec 146.6 151 147.5
ω1/cm-1 1278 1258i 1271
ω2/cm-1 855 1233i 964i
ω3/cm-1 855 1209 1020

a See the text. b Saddle point with two imaginary frequencies. c In
kcal mol-1, relative to the N(4S) + N2 asymptote.

Figure 5. Relaxed triangular plot of the hypersurface. Contours are
equally spaced by 6 mEh, starting at zero.

Figure 6. Cuts of DMBE potential energy surface along the
atom-diatom radial coordinate for a fixed diatomic bond distance of
2.086a0 at the van der Waals region for several angles of insertion.
The solid points are the extrapolated CCSD(T) while the lines
corresponds to the fitted surface.

Figure 7. Isotropic (V0) and leading anisotropic (V2) components of
the N-N2 interaction potential, with the diatomic fixed at the equilib-
rium geometry.

TABLE 4: Logarithm of the Thermal Rate Coefficient (in
cm3s-1) for the N + N2 Exchange Reaction

temp (K) DMBEa L4a WSHDSPb exp

1273 -18.4 -18.7 -18.5 e-16.9c

3400 -12.9 -13.0 -13.0 -12.3 ( 1.0d

a From QCT calculations carried out in the present work.
b Reference 6. c Reference 3. d Reference 4.
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